Online CRC Calculation
Be careful: there are several ways to realize a CRC. They differ (at least) in the way which bit is shifted in first and also in the initialization of the flipflops.

Enter your CRC polynomial as bit sequence ("100110001") here:

This gives the following CRC polynomial (press RETURN to update):

P(x) = x8+ x5+ x4+ x0

Enter your message as sequence of hex bytes here. Don't care about whitespaces since they will be ignored.

Press RETURN or the Calculate button below to see the CRC checksum here:

00000000 is the initial CRC value        (hide details)
Next hex digit [7]:
   Shift in of [0] results in 00000000
   Shift in of [1] results in 00110001
   Shift in of [1] results in 01010011
   Shift in of [1] results in 10010111
Next hex digit [3]:
   Shift in of [0] results in 00011111
   Shift in of [0] results in 00111110
   Shift in of [1] results in 01001101
   Shift in of [1] results in 10101011
Next hex digit [4]:
   Shift in of [0] results in 01100111
   Shift in of [1] results in 11111111
   Shift in of [0] results in 11001111
   Shift in of [0] results in 10101111
Next hex digit [0]:
   Shift in of [0] results in 01101111
   Shift in of [0] results in 11011110
   Shift in of [0] results in 10001101
   Shift in of [0] results in 00101011
Next hex digit [5]:
   Shift in of [0] results in 01010110
   Shift in of [1] results in 10011101
   Shift in of [0] results in 00001011
   Shift in of [1] results in 00100111
Next hex digit [5]:
   Shift in of [0] results in 01001110
   Shift in of [1] results in 10101101
   Shift in of [0] results in 01101011
   Shift in of [1] results in 11100111
Next hex digit [0]:
   Shift in of [0] results in 11111111
   Shift in of [0] results in 11001111
   Shift in of [0] results in 10101111
   Shift in of [0] results in 01101111
Next hex digit [0]:
   Shift in of [0] results in 11011110
   Shift in of [0] results in 10001101
   Shift in of [0] results in 00101011
   Shift in of [0] results in 01010110
Next hex digit [0]:
   Shift in of [0] results in 10101100
   Shift in of [0] results in 01101001
   Shift in of [0] results in 11010010
   Shift in of [0] results in 10010101
Next hex digit [0]:
   Shift in of [0] results in 00011011
   Shift in of [0] results in 00110110
   Shift in of [0] results in 01101100
   Shift in of [0] results in 11011000
Next hex digit [0]:
   Shift in of [0] results in 10000001
   Shift in of [0] results in 00110011
   Shift in of [0] results in 01100110
   Shift in of [0] results in 11001100
Next hex digit [0]:
   Shift in of [0] results in 10101001
   Shift in of [0] results in 01100011
   Shift in of [0] results in 11000110
   Shift in of [0] results in 10111101
$ bd(hexadecimal)
% 10111101(binary)
! 189(decimal)



A typical hardware implementation (LFSR - Linear Feedback Shift Register) is shown here:


Dr.-Ing. K. Gorontzi, 2005

The input bits are shifted into the very left XOR gate. The MSB (leftmost bit) of each byte is shifted in first.

Each flipflop represents a single CRC output bit. The leftmost flipflop is the MSB of the CRC. This implementation doesn't need to augment the serial input message with zeros.

Note that in our case the flipflops are cleared to zeros at the beginning of each CRC calculation.




A simple VERILOG implementation of the above polynom is shown here. You can directly copy the source snippet to your code (distributed under LGPL):


// ==========================================================================
// CRC Generation Unit - Linear Feedback Shift Register implementation
// (c) Kay Gorontzi, GHSi.de, distributed under the terms of LGPL
// ==========================================================================
module CRC_Unit(BITVAL, BITSTRB, CLEAR, CRC);
   input        BITVAL;                            // Next input bit
   input        BITSTRB;                           // Current bit valid (Clock)
   input        CLEAR;                             // Init CRC value
   output [7:0] CRC;                               // Current output CRC value

   reg    [7:0] CRC;                               // We need output registers
   wire         inv;
   
   assign inv = BITVAL ^ CRC[7];                   // XOR required?
   
   always @(posedge BITSTRB or posedge CLEAR) begin
      if (CLEAR) begin
         CRC = 0;                                  // Init before calculation
         end
      else begin
         CRC[7] = CRC[6];
         CRC[6] = CRC[5];
         CRC[5] = CRC[4] ^ inv;
         CRC[4] = CRC[3] ^ inv;
         CRC[3] = CRC[2];
         CRC[2] = CRC[1];
         CRC[1] = CRC[0];
         CRC[0] = inv;
         end
      end
   
endmodule




A simple C implementation of the above polynom is shown in the following code. Again, you can directly copy the source snippet to your code (distributed under LGPL):


// ==========================================================================
// CRC Generation Unit - Linear Feedback Shift Register implementation
// (c) Kay Gorontzi, GHSi.de, distributed under the terms of LGPL
// ==========================================================================
char *MakeCRC(char *BitString)
   {
   static char Res[9];                                 // CRC Result
   char CRC[8];
   int  i;
   char DoInvert;
   
   for (i=0; i<8; ++i)  CRC[i] = 0;                    // Init before calculation
   
   for (i=0; i<strlen(BitString); ++i)
      {
      DoInvert = ('1'==BitString[i]) ^ CRC[7];         // XOR required?

      CRC[7] = CRC[6];
      CRC[6] = CRC[5];
      CRC[5] = CRC[4] ^ DoInvert;
      CRC[4] = CRC[3] ^ DoInvert;
      CRC[3] = CRC[2];
      CRC[2] = CRC[1];
      CRC[1] = CRC[0];
      CRC[0] = DoInvert;
      }
      
   for (i=0; i<8; ++i)  Res[7-i] = CRC[i] ? '1' : '0'; // Convert binary to ASCII
   Res[8] = 0;                                         // Set string terminator

   return(Res);
   }

// A simple test driver:

#include <stdio.h>

int main()
   {
   char *Data, *Result;                                       // Declare two strings

   Data = "1101000101000111";
   Result = MakeCRC(Data);                                    // Calculate CRC
   
   printf("CRC of [%s] is [%s] with P=[100110001]\n", Data, Result);
   
   return(0);
   }



Of course, the software is provided here 'as is' with no expressed or implied warranties at all.

Do you consider this page somewhat useful? Please drop me a note via contact.