Online CRC Calculation
Online CRC Calculation
Be careful: there are several ways to realize a CRC. They differ (at least) in the way which bit is shifted in first and also in the initialization of the flipflops.
A typical hardware implementation (LFSR - Linear Feedback Shift Register) is shown here:
![]() |
![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
Dr.-Ing. K. Gorontzi, 2005 | |||||||||||
The input bits are shifted into the very left XOR gate. The MSB (leftmost bit) of each byte is shifted in first.
Each flipflop represents a single CRC output bit. The leftmost flipflop is the MSB of the CRC. This implementation doesn't need to augment the serial input message with zeros.
Note that in our case the flipflops are cleared to zeros at the beginning of each CRC calculation.
A simple VERILOG implementation of the above polynom is shown here. You can directly
copy the source snippet to your code (distributed under LGPL):
// ==========================================================================
// CRC Generation Unit - Linear Feedback Shift Register implementation
// (c) Kay Gorontzi, GHSi.de, distributed under the terms of LGPL
// ==========================================================================
module CRC_Unit(BITVAL, BITSTRB, CLEAR, CRC);
input BITVAL; // Next input bit
input BITSTRB; // Current bit valid (Clock)
input CLEAR; // Init CRC value
output [7:0] CRC; // Current output CRC value
reg [7:0] CRC; // We need output registers
wire inv;
assign inv = BITVAL ^ CRC[7]; // XOR required?
always @(posedge BITSTRB or posedge CLEAR) begin
if (CLEAR) begin
CRC = 0; // Init before calculation
end
else begin
CRC[7] = CRC[6];
CRC[6] = CRC[5];
CRC[5] = CRC[4] ^ inv;
CRC[4] = CRC[3] ^ inv;
CRC[3] = CRC[2];
CRC[2] = CRC[1];
CRC[1] = CRC[0];
CRC[0] = inv;
end
end
endmodule
A simple C implementation of the above polynom is shown in the following code. Again, you
can directly copy the source snippet to your code (distributed under LGPL):
// ==========================================================================
// CRC Generation Unit - Linear Feedback Shift Register implementation
// (c) Kay Gorontzi, GHSi.de, distributed under the terms of LGPL
// ==========================================================================
char *MakeCRC(char *BitString)
{
static char Res[9]; // CRC Result
char CRC[8];
int i;
char DoInvert;
for (i=0; i<8; ++i) CRC[i] = 0; // Init before calculation
for (i=0; i<strlen(BitString); ++i)
{
DoInvert = ('1'==BitString[i]) ^ CRC[7]; // XOR required?
CRC[7] = CRC[6];
CRC[6] = CRC[5];
CRC[5] = CRC[4] ^ DoInvert;
CRC[4] = CRC[3] ^ DoInvert;
CRC[3] = CRC[2];
CRC[2] = CRC[1];
CRC[1] = CRC[0];
CRC[0] = DoInvert;
}
for (i=0; i<8; ++i) Res[7-i] = CRC[i] ? '1' : '0'; // Convert binary to ASCII
Res[8] = 0; // Set string terminator
return(Res);
}
// A simple test driver:
#include <stdio.h>
int main()
{
char *Data, *Result; // Declare two strings
Data = "1101000101000111";
Result = MakeCRC(Data); // Calculate CRC
printf("CRC of [%s] is [%s] with P=[100110001]\n", Data, Result);
return(0);
}
Of course, the software is provided here 'as is' with no expressed or implied warranties at all.
Do you consider this page somewhat useful? Please drop me a note via



